Tag Archive: permaculture


Previously, I wrote about the affinity of certain mushrooms for cesium and their use for bioremediation.  It seems fungi are not alone in their appetite for radionuclides.  There is a class of bacteria that have been known for a long time to feed off of ionizing radiation.  When exposed to x-rays, these bacteria are known to move towards the source of radiation, rather than away from it.

Now there are a number of researchers in Japan who are busy demonstrating that these photosynthetic bacteria can be an effective force for bioremediation of nuclear fallout.  Here is a brief video from NHK world:

More on the work by Ken Sasaki:

http://www.nukeclear.sekaifood.com/en/component/content/article/263-new-bioremediation

The researchers mixed 90 grams of photosynthetic bacteria with alginic acid and other chemicals, forming the resulting granular material into marble-sized spheres. These were injected into 50 liters of concentrated sludge, whose radiation levels were monitored for three days.

Radiation levels ranging from 12.04 to 14.54 microsieverts per hour at the start of the experiment were found to have dropped to between 2.6 and 4.1 microsieverts per hour by the end of the third day. Subtracting the 1.2 microsieverts of radiation that was detected in the area around the pool during the experiment due to the Fukushima No. 1 Nuclear Power Plant disaster, the bacteria was found to have reduced radiation levels in the sludge by a maximum of 89.4 percent.

The negative charge of the surface of the bacteria used in the experiment has the property of attracting positively-charged materials, which it did with the positively-charged cesium. Moreover, the bacteria feed on potassium, and Sasaki says the bacteria likely absorbed the cesium because of its resemblance to potassium.

Through dehydration and incineration, the volume of the used bacteria mixture can be reduced to a seventy-fifth of its original volume, and weight to a hundredth. Cesium turns into gas and is dispersed at 640 degrees Celsius, which can be avoided if temperatures are kept at 500 degrees or lower.

Sasaki, who is planning to run demonstration experiments, is hopeful that the technology can be applied to the decontamination of radiation-tainted soil. “The strength of this technology is that it makes decontamination possible at regular temperatures and pressures,” he said. “It is low cost as well, and we’d like to see it used in Fukushima’s reconstruction efforts.”

Even more interesting, but a bit more obscure is work being done that suggests bacteria may actually speed the decay of radioactive cesium by as much as 30 times the normal half life!  Still looking for more documentation on this.  Here’s what I have so far:

According to V. Vysotskii and A.Kornilova, the radioactive 137Cs (half-life 30 years) can be destroyed by bacteria. In an experiment described at (1) they introduced 260,900 Bk of 137Cs into a solution containing several chemical substances and bacteria. By natural decay the activity after 100 days would be reduced by 1670 Bk. But the actually measured reduction of radioactivity, after 100 days, turned out to be 51,100 Bk, plus or minus 1000. In other words, the reduction due to bacteria was 29 times larger than the reduction due to natural decay.

All activities were measured by placing small solution-containing flasks (2 by 2 by 2 cm) on top of the 1- cm-wide detector (2). Flasks were hermetically sealed, to make sure that cesium does not escape into the air, in the form of a volatile compound. Absence of accumulation of a solid cesium compound, gradually precipitating toward the bottom of the flask, was confirmed in a control experiment (during which 137Cs was decaying in the same chemical solution but without bacteria.) The decrease of radioactivity, during that experiment, was very close to the expected 1670 Bk.

http://pages.csam.montclair.edu/~kowalski/cf/402vysotskii.html

And here is a PDF that is fairly technical from the scientists in Kiev who performed this research: http://pages.csam.montclair.edu/~kowalski/cf/402vysotskii.pdf

One of the interesting takeaways from that PDF is that what was most effective were synergistic communities of micro-organisms, rather than monocultures of one strain of bacteria or yeast.  This should not surprise us at all from what we know about the web of multitudinous life forms that make up soil or the complex ecologies of bacteria that inhabit our own guts.  Nothing in nature works in isolation.

What we are talking about here is biological transmutation, which is based on theory outside of the mainstream of physics.  One prominent promoter of this theory in Japan was reknowned macrobiotic teacher George Ohsawa.  Considering the success macrobiotics has shown over the years in treating radiation illness, perhaps the theory should not be lightly dismissed.

Here is a little more about research being done on a particular bacterium by the US Department of Energy (who created the nuclear waste problem in the first place):

The contamination of groundwater with radionuclides and metals is one of the most challenging environmental problems at Department of Energy former nuclear weapons production sites. Researchers at the University of Massachusetts have previously found that Geobacter species can precipitate a wide range of radionuclides and metals (including uranium, technetium and chromium) from groundwater, preventing them from migrating to wells or rivers where they may pose a risk to humans and the environment.

The analysis of the genome sequence revealed a number of capacities that had not been previously suspected from past research on this microbe. “We’ve provided a comprehensive picture that has led to fundamental changes in how scientists evaluate this microbe,” said Barbara Methe, the TIGR researcher who led the genome project and is the first author of the Science paper. “Research based on genome data has shown that this microbe can sense and move towards metallic substances, and in some cases can survive in environments with oxygen.” G. sulfurreducenswas previously thought to be an anaerobic organism.

The other main project collaborator was Derek Lovley, a professor of microbiology at the University of Massachusetts, Amherst, who discovered the Geobacter family of bacteria and has led projects to assess their biology and their potential for bioremediation. Lovley said, “Sequencing the genome of Geobacter sulfurreducenshas radically changed our concepts of how this organism functions in subsurface environments.” The genome analysis, he said, “revealed previously unsuspected physiological properties” of the bacterium and also gave scientists insight into the metabolic mechanisms that the organism uses to harvest energy from the environment.

Geobacter reduces metal ions in a chemical process during which electrons are added to the ions. As a result, the metals become less soluble in water and precipitate into solids, which are more easily removed. Small charges of electricity are also created through the reduction process. Geobacter is also of interest to the Department of Energy because of its potential to create an electrical current in a “bio-battery.”

Geobacter microbes are widely distributed in nature and are commonly found in subsurface environments contaminated with radionuclides and metals. Researchers have demonstrated that if they “feed” the microbes simple carbon sources such as acetate they will grow faster and precipitate more radionuclides and metals. These findings are now serving as the basis for a test of a bioremediation strategy aimed at removing uranium from groundwater at a Uranium Mill Tailings Remedial Action site near Rifle, Colorado.

http://genomicscience.energy.gov/news/1203geobacter.shtml#page=news

Geobacter sulfurreducens is not the only bacterium with the ability to induce profound changes in radioactive elements.  There are a vast number of different types of bacteria that may be helpful in decontaminating land.

The folks over at Uncanny Terrain offer this post related to the use of EM (effective micro-organisms) which is a proprietary culture which has been popular as an agricultural application in Japan and abroad:

Ishii used to deliver food to Japanese restaurants in Maryland.  For years he studied EM (effective microogranisms) as a hobby.  Now he grows organic vegetables in Sukagawa, 60 km southwest of the Fukushima Daiichi Nuclear Power Plant.  He believes the EM prevents his crops from absorbing radioactive cesium—they have tested “ND”: no detectible radiation.

Controlled experiments have been done using EM in Iitate Village, which was heavily affected by fallout from the Fukushima nuclear accident.  The results are stunning.  

1. The Results in Iidate Village

A summary report is presented here, while a detail report will be presented in October. A plot of 24a blueberry field was divided into a control section (with no EM application) and two experimental sections (with EM application). The experiment began in the 2nd week of May by making twice-a-week spraying of a mixture of 80 parts EMA (EM activated) and 20 parts phototrophic bacteria solution: 100L of the mixture per 10a in one experimental section and the same amount of the mixture with one time application of 250Kg rice bran per 10a in other experimental section.

The preliminary measurement showed that cecium-137 level reached 20,000Bq per 1Kg soil. In order to reduce the radiation down below 5,000Bq (considered allowable for farming by Japanese government), EM mixture was sprayed twice per week. Interim report presents the results after 19 sprays (in about two months). Soil sampling was made in accordance with the sampling standards for environmental data prescribed by the Ministry of Education and Science and sent to a highly reputable Isotope Research to determine the level of cesium-137.


(1-1) The Field Experiment in Iidate Village

The results were as follows. The level of 20,000Bq decreased by 40% in one month and by 75% by the end of the 2nd month to 5,000Bq which was allowable for planting rice. Farming is allowable now.

A half-life of cesium-137 is about 30 years. When left as is in the nature, the level in the experimental field will be 10,000Bq after 30 years. It will take 60 years to reach the level of 5,000Bq.

Other than rice farming, allowable level of radiation exposure has not been established for other crops and vegetable farming. The allowable level of cesium-137 for farm and marine produce is set below 500Bq. Needless to say; it is desirable when “not-detected”.

In addition, there is a group of farmers in Fukushima Prefecture a little further from ground zero who have had their produce tested for radiation.  Again, the results are remarkable:

In the area of Date city of Fukushima prefecture, there are many farmers who have used EM well over 15 years. Mr. Makuta Takehiro has organized about 50 EM farmers under a supply chain management called “Agri-SCM”. The recent Tsunami and earthquake has forced approximately 10 farmers out of farming, leaving only 40 farmers in the group.

In order to prevent unfounded conjecture, Mr. Makuta took the harvested crops and vegetables of “Agri-SCM” farmers to Isotope Research for radiation measurement, all of which results showed “not-detected”. According to Mr. Makuta, some farm products from low contamination areas have shown high concentration above the allowable level when EM application has not been made. All EM applied farm products from Kohriyama and Fukushima cities have proved “not-detected” level of radiation, which seems to indicate that EM farming can solve radiation problems.

A lot more on the use of EM for bioremediation can be found here.

While EM products are excellent products, they are often criticized for being costly.  The bacteria and yeasts in the EM formula are abundant naturally-occurring bacteria normally present in soil and natural bodies of water.  Anyone can brew their own version with a little effort and a dash of adventurousness.

Iiyama Ichiro has been a professional in agricultural and bioremedial use of beneficial bacteria for many years in Japan, China and Korea.  Iiyama is promoting the practice of homebrewing bacteria (fermenting) for internal use, for bathing, cleaning radiation around the home and for bioremediation of farmland.  

Here is his website in Engrish, which is barely comprehensible due to translation software, and not very informative anyway.  There are also Japanese and Chinese versions, not sure how informative they are.  His far-ranging Japanese blog is here.    

Here is a brief summary from a blogger whose Japanese wife is following Iiyama’s method of homebrewing.  

There are ten 2-liter plastic bottles standing together under
the sun in our living room which my wife Minako is
cultivating–yogurt germs, which supposedly can fight against
radiation. It’s a very simple recipe: rice bran (multi-purpose:
once used for miso, as well as for detergent, via gamma-
globlin), brown sugar, sea salt, and mineral water.

Each bottle needs to be shaken several times a day and
the cap removed to allow the germs to breathe.
Eventually the water is carbonated because the germs breathe
out CO2. When the germs become sufficently cultivated, the
water turns caramel-colored and smells like fruity vinegar.
When it’s ready, you can dilute it and pour it around
contaminated areas such  as sewer openings, leaf piles, or
poorly drained areas. Basically, the water can be scattered
everywhere.

Here’s the rest of the blog post.

Obviously, if bioremediation using bacteria is as effective as early results suggest, this is exhilirating news for Japan, Ukraine and the rest of the world.  The ability to decontaminate the landscape quickly and inexpensively is a game-changer.

The implications for human health are also very important.  In my post on probiotics, I touched on the radioprotective power of probiotic foods.  The ability of bacteria to transform radionuclides into harmless elements may be one of the reasons why probiotic foods are so effective in supporting the health of those affected by radiation.

That’s all for now.  Below is a list of links related to this topic.  I hope to post more over the next few months.

Be well,

JB

Advertisements

As we know, the threat from radiation is a long-term one.  Chernobyl continues to have a large exclusion zone almost 30 years after the nuclear accident.  60 years after the nuclear testing that took place there, Bikini Atoll is still uninhabitable.  The ambient exposure levels are acceptable, however the soil is still so contaminated that if people lived there and grew food, it would be unsafe to consume.  The effects of contamination from Chernobyl are spread far and wide.  Even today nuclear contamination from Chernobyl afflicts Turkish agriculture.  Dr. Helen Caldicott has stated that the products of Turkish agriculture are still contaminated and should not be consumed.

The primary contaminants of concern are cesium and strontium, both of which are easily absorbed by plants from the environment.  Considering these radionuclides will be present in significant quantities for the next 200 years, it would make sense to take an active approach to prevent a situation like what ha  Japan’s has a frightening lack of food security.  Even before the crisis, Japan only produced 40% of it’s own food domestically.  The Japanese farming population is mostly elderly, and any nascent interest in agriculture that might have existed in the younger generation has likely been dimmed significantly by the current disaster.  The despair felt by farmers was expressed succinctly and tragically by an organic grower from Fukushima who hanged himself shortly after the nuclear accident.

Contaminated areas in Fukushima, Ibaraki and Chiba prefectures have historically produced a large percentage of the rice and vegetables to feed the metropolis of Tokyo.  This entire area has been covered in radionuclides.  Only small areas have been banned from production, however, a former nuclear adviser to the Prime Minister has warned of chaos that he believes will ensue once this year’s rice harvest gets underway and the levels of contamination are better understood.

Considering Japan’s precarious food security and the amount of radiation exposure that people have already had, it is imperative that the soils of the Kanto and Tohoku regions undergo a thorough process of decontamination.

The only way to orchestrate a nuclear cleanup on this scale is bioremediation, the use of living organisms to remedy environmental contamination.  To date, proposals I have encountered include two major approaches to bioremediation: Mycoremediation and Phytoremediation.  Mycoremediation means using various strains of fungi to clean up radionuclides.  The primary proponent of this is mycologist and researcher Paul Stamets, author of “Mushrooms Can Save the World”.  Phytoremediation uses plants, including sunflowers(helianthus), indian mustard (brassica), and pigweed (amaranthus).

Below are the steps in Paul Stamets’ proposal:

1) Evacuate the region around the reactors.

2) Establish a high-level, diversified remediation team including foresters, mycologists, nuclear and radiation experts, government officials, and citizens.

3) Establish a fenced off Nuclear Forest Recovery Zone.

4) Chip the wood debris from the destroyed buildings and trees and spread throughout areas suffering from high levels of radioactive contamination.

5) Mulch the landscape with the chipped wood debris to a minimum depth of 12-24 inches.

6) Plant native deciduous and conifer trees, along with hyper-accumulating mycorrhizal mushrooms, particularly Gomphidius glutinosus, Craterellus tubaeformis, and Laccaria amethystina (all native to pines). G. glutinosus has been reported to absorb – via the mycelium – and concentrate radioactive Cesium 137 more than 10,000-fold over ambient background levels. Many other mycorrhizal mushroom species also hyper-accumulate.

7) Wait until mushrooms form and then harvest them under Radioactive HAZMAT protocols.

8) Continuously remove the mushrooms, which have now concentrated the radioactivity, particularly Cesium 137, to an incinerator. Burning the mushroom willresult in radioactive ash. This ash can be further refined and the resulting concentrates vitrified (placed into glass) or stored using other state-of-the-art storage technologies.

Stamets’ full proposal can be found here: The Nuclear Forest Recovery Zone Mycoremediation of the Japanese Landscape After Radioactive Fallout by Paul Stamets

Following is an excerpt from an article about phytoremediation.  The rest of the article is linked at the bottom of the quote:

Botanical cleanup crews: using plants to tackle polluted water and soil – phytoremediation

by Tina Adler

Rafts with sunflowers growing on them float on a small pond at the Chernobyl nuclear accident site in the Ukraine. No, it’s not some touching monument to the 1986 disaster. The plants are helping to clean the pond; their roots dangle in the water to suck up the radionuclides cesium 137 and strontium 90.

This sunflower project is one of many international efforts at phytoremediation-the use of plants to absorb pollutants from air, water, and soil. In the United States, both government agencies and private companies, including Exxon Corp. and DuPont are testing a variety of plants to see if they can do some of the dirty work of cleaning up such pollutants as radioactive material, lead, selenium, and oil. Many plants, it turns out, have a taste for these stubborn contaminants.

“To survive, plants have evolved sophisticated metabolic and sequestration mechanisms to detoxify a wide variety of chemical substrates,” explains Scott Cunningham of DuPont Central Research and Development in Newark, Del. The plants are also loaded with microbes and fungi that help break down the chemicals. Cunningham spoke in May at a conference on phytoremediation held in Arlington, Va.

The Chernobyl sunflower project began in 1994. That summer, researchers from Phytotech, a phytoremediation company in Monmouth Junction, N.J., and their government and university colleagues installed the rafts. Together, they held 24 sunflowers and dotted a 75-square-meter pond located 1 kilometer from the Chernobyl reactor, says Burt Ensley, Phytotech’s president.

The plants preferentially absorb cesium and strontium from a mixture of metals, he notes. The plants don’t metabolize the radionuclides, but the cesium stays in the roots and most of the strontium moves to the shoots. The company disposes of the plants as radioactive waste after about 3 weeks on the pond.

The investigators started with too few flowers to clean the pond completely, Ensley acknowledges. This summer, they installed 50 to 60 sunflowers, which should clean the pond in a couple of weeks, he asserts. Ensley estimates that removing radioactive metals with sunflowers costs $2 to $6 per thousand gallons of water, much less than existing technologies. However, to avoid recontaminating the pond, the ground nearby must be decontaminated at the same time. For 2 years, Phytotech scientists have been removing cesium and strontium from soil on one-quarter acre of the Chernobyl site by growing Indian mustard (Brassica juncea). In the United States, almost all radioactive sites belong to the Department of Energy. Prior to the Chernobyl sunflower project, Phytotech researchers experimented with pumping contaminated groundwater into containers of sunflowers at a DOE uranium-processing plant in Ashtabula, Ohio. Within 24 hours, the plants reduced the concentration of uranium in the water from 350 parts per billion (ppb) to less than 5 ppb, which meets the legal limits for groundwater, Ensley says.

Read the full article here.

I have heard that grassroots efforts are already underway in Japan to plant sunflowers with this purpose in mind.  The current state of paralysis and overwhelm experienced by the Japanese government makes it obvious that any bioremediation efforts are going to need to be spearheaded by private citizens, NGO’s and university research departments.  Prefectural governments or TEPCO itself are only likely to get involved in something so proactive once people start leaving piles of radioactive sunflowers at the front door to the offices.  I am open to being pleasantly surprised about positive movement from the public sector, however, I don’t suggest that people hold their breath waiting for the government or TEPCO to clean up the mess.  It is time for the people to take matters in their own hands and start planting sunflowers and propagating mycorrhizal fungi and decontaminating their own land.  The alternatives are for the Japanese people to give up farming in the Kanto and Tohoku regions or eat radiation for the next 100 years.

http://
%d bloggers like this: